В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.
Рассмотрим треугольник ABF.
По свойству
биссектрисы:
BG/GF=AB/AF=17/15
cosA=AF/AB=15/17 (по
определению косинуса)
Существует тригонометрическая формула:
sin2α+cos2α=1
Тогда:
sin2∠BAF+cos2∠BAF=1
sin2∠BAF+(15/17)2=1
sin2∠BAF=1-225/289
sin2∠BAF=(289-225)/289
sin2∠BAF=64/289
sin∠BAF=8/17
По
теореме синусов:
BC/sin∠BAF=2R
16/(8/17)=16*17/8=34=2R
R=34/2=17
Ответ: R=17
Поделитесь решением
Присоединяйтесь к нам...
Высота равностороннего треугольника равна 15√
На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=36, BC=42 и CD=24.
В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.
Лестницу длиной 2 м прислонили к дереву.
На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на
1,2 м?
Основание AC равнобедренного треугольника ABC равно 18. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Комментарии:
(2014-05-14 20:55:14) Аделя: конечно из 2 части.