ОГЭ, Математика. Геометрия: Задача №96E95A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №96E95A

Задача №306 из 1087
Условие задачи:

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите длину стороны AC, если радиус описанной окружности треугольника ABC равен 7.

Решение задачи:

Рассмотрим рисунок. Проведем отрезок MP, как показано на рисунке. BM - диаметр малой окружности (по условию задачи), следовательно треугольник BMP - прямоугольный с гипотенузой BM (по свойству описанной окружности).
Рассмотрим треугольники BMP и CPM:
MP - общая сторона
BP=PC (по условию задачи)
/BPM=/CPM, т.к. /BPM - прямой, а /CPM - ему смежный.
Следовательно треугольники BMP и CPM равны (по первому признаку). Отсюда следует, что BM=MC=MA.
Рассмотрим треугольник BMC. Т.к. MB=MC, то этот треугольник равнобедренный, следовательно /MCP=/PBM (по свойству равнобедренных треугольников).
В треугольнике ABM аналогичная ситуация, /BAM=/ABM. Т.е. получается, что /BAM+/MCP=/ABC. Из теоремы о сумме углов треугольника следует, 180°=/BAM+/MCP+/ABC
180°=/ABC+/ABC
180°=2*/ABC
90°=/ABC
Из чего следует, что треугольник ABC - прямоугольный. По свойству описанной окружности следует, что точка М - центр окружности, следовательно AC - диаметр => AC=2*R=2*7=14.
Ответ: AC=14.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F4E03B

Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.



Задача №EE59B5

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.



Задача №054ABA

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 31.



Задача №680A2D

Точка О – центр окружности, /BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №272C8D

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 1 м, а длинное плечо — 3 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Первый признак равенства треугольников.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика