ОГЭ, Математика. Геометрия: Задача №CF2D65 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №CF2D65

Задача №594 из 1087
Условие задачи:

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=10:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника ABC.

Решение задачи:

BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM и проведем высоту из вершины А.
Высота h так же является высотой для треугольников ABK и AKM.
Значит их площади:
SABK=h*BK*1/2
SAKM=h*KM*1/2
Найдем отношение этих площадей:
SABK/SAKM=(h*BK*1/2)/(h*KM*1/2)
SABK/SAKM=BK/KM=10/9
Т.е. SABK=SAKM*10/9
SABK+SAKM=SABM=SABC/2
SAKM*10/9+SAKM=SABC/2
SAKM*19/9=SABC/2
SAKM=(SABC/2)*9/19
SAKM=9*SABC/38
Проведем отрезок CK и рассмотрим треугольники AKM и CKM.
Проведем высоту KF. Эта высота является общей для обоих этих треугольников. Площади этих треугольников:
SAKM=KF*AM*1/2
SCKM=KF*CM*1/2
KF=CM (так как BM- медиана), следовательно SAKM=SCKM=9*SABC/38
Тогда SCKB=SCMB-SCKM=SABC/2-9*SABC/38=19*SABC/38-9*SABC/38=10*SABC/38
Вернемся к первоначальному рисунку и проведем отрезок MR, параллельный AP.
Для треугольника APC MR - средняя линия, так как проходит через середину AC и параллельна AP.
Следовательно, по теореме о средней линии, PR=RC.
Рассмотрим треугольники MBR и KBP.
∠MBR - общий для обоих треугольников.
∠BKP=∠BMR, так как они соответственные (для параллельных прямых KP и MR и секущей MB).
Значит, по первому признаку, данные треугольники подобны.
Следовательно:
BM/BK=BR/BP
(BK+KM)/BK=(BP+PR)/BP
1+KM/BK=1+PR/BP
KM/BK=PR/BP=9/10 (по условию задачи)
Проведем высоту KD, как показано на рисунке.
KD - является высотой для треугольников KBP и KCP.
SKBP=KD*BP*1/2
SKCP=KD*CP*1/2=KD*(PR+CR)*1/2=KD*(2PR)*1/2
Найдем отношение этих площадей:
SKBP/SKCP=(KD*BP*1/2)/(KD*(2PR)*1/2)
SKBP/SKCP=BP/(2PR)=(BP/PR)/2=(10/9)/2=5/9
SKBP=SKCP*5/9
SCKB=10*SABC/38=SKBP+SKCP=SKCP*5/9+SKCP=SKCP*5/9+SKCP*9/9=SKCP*14/9
10*SABC/38=SKCP*14/9
SKCP = SABC*(10/38)*(9/14) = SABC*90/(38*14)
SKPCM = SCKM+SKCP = SABC*9/38+SABC*90/(38*14) = SABC*126/(38*14)+SABC*90/(38*14) = SABC*216/(38*14) = SABC*216/(38*14) = SABC*108/(19*14) = SABC*54/(19*7) = SABC*54/133
SKPCM/SABC = (SABC*54/133)/SABC = 54/133
Ответ: 54/133

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №026D2D

Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.



Задача №EB47E1

От столба к дому натянут провод длиной 15 м, который закреплён на стене дома на высоте 3 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 12 м.



Задача №F77008

Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.



Задача №11FB17

Боковая сторона трапеции равна 5, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.



Задача №22636E

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.

Комментарии:


(2015-01-13 18:55:19) Администратор: Чуть выше отношения мы записали чему равны площади обоих треугольников и разделили одну площадь на другую. Получили, что отношение площадей равно BP/(2PR) или (BP/PR)/2. А еще раньше в решении мы выяснили, что KM/BK=PR/BP=9/10 => BP/PR=10/9 => (BP/PR)/2=(10/9)/2=5/9
(2015-01-13 18:55:19) Администратор: Чуть выше отношения мы записали чему равны площади обоих треугольников и разделили одну площадь на другую. Получили, что отношение площадей равно BP/(2PR) или (BP/PR)/2. А еще раньше в решении мы выяснили, что KM/BK=PR/BP=9/10 => BP/PR=10/9 => (BP/PR)/2=(10/9)/2=5/9
(2015-01-13 14:27:00) : как вы определили что треугольник BKP относится к треугольнику KCP как 5 к 9
(2015-01-13 14:24:55) : объясните как решается задача

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Медиана треугольника
- отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Свойства медианы треугольника:
1) Медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
2) Медиана разбивает треугольник на два равновеликих треугольника.
3) Треугольник делится тремя медианами на шесть равновеликих треугольников.
4) Большей стороне треугольника соответствует меньшая медиана.
5) Из векторов, образующих медианы, можно составить треугольник.
6) При аффинных преобразованиях медиана переходит в медиану.
7) Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):, где mc — медиана к стороне c; a, b, c — стороны треугольника. В частности, сумма квадратов медиан произвольного треугольника в 4/3 раза меньше суммы квадратов его сторон:
8) Формула стороны через медианы: , где ma, mb, mc медианы к соответствующим сторонам треугольника, a, b, c — стороны треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика