ОГЭ, Математика. Геометрия: Задача №D852E5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Так как в трапецию вписана окружность, то:
AD+BC=AВ+CD (по четвертому свойству трапеции).
AD+13=14+22
AD=14+22-13=23
Ответ: 23

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №106F52

В треугольнике ABC сторона AB=32, AC=64, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.



Задача №0178E9

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.



Задача №FE8B32

Проектор полностью освещает экран A высотой 50 см, расположенный на расстоянии 140 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 260 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?



Задача №30220A

Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=11, AD=15, AC=52. Найдите AO.



Задача №DABB4F

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=21, MN=14. Площадь треугольника ABC равна 27. Найдите площадь треугольника MBN.

Комментарии:


(2019-12-25 08:18:36) С.: трапеция абсд с основаниями ад и бс вписана в окружность. так,что ад-диаметр окружности .Диагональ трапеции равна 10 см,а её площадь - 25см2.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства трапеций:
1)Средняя линия трапеции параллельна основаниям и равна их полусумме.

a||c, c||b, c=(a+b)/2
2) Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии.

c=(a-b)/2
3) (Обобщённая теорема Фалеса). Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
4) В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
5) Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен (среднее гармоническое), где x и y — основания трапеции (формула Буракова).
7) Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
8) Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
9) Треугольники, лежащие на основаниях при пересечении диагоналей, подобные.
10) Треугольники, лежащие на боковых сторонах, равновеликие.
11) Если отношение оснований равно K, то отношение площадей треугольников, лежащих на основаниях равно K2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика