Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
По
первому свойству квадрата, все его углы прямые, следовательно можно применить теорему Пифагора.
По определению квадрата, все его стороны равны.
d2=(3√2)2+(3√2)2
d2=2(3√2)2
По первому правилу действий со степенями:
d2=2*32(√2)2
d2=2*9*2=36
d=√36=6
Ответ: 6
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN
и CM пересекаются в точке O, AN=27, CM=9. Найдите AO.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, BC=32. Найдите AK.
В треугольнике ABC угол C прямой, BC=3, cosB=0,6. Найдите AB.
Комментарии: