Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
По
первому свойству квадрата, все его углы прямые, следовательно можно применить теорему Пифагора.
По определению квадрата, все его стороны равны.
d2=(3√2)2+(3√2)2
d2=2(3√2)2
По первому правилу действий со степенями:
d2=2*32(√2)2
d2=2*9*2=36
d=√36=6
Ответ: 6
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BOC=60° (см. рисунок). Найдите величину угла BAC (в градусах).
Хорды AC и BD окружности пересекаются в точке P, BP=7, CP=14, DP=10. Найдите AP.
В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.
Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.
На средней линии трапеции ABCD с основаниями AD и BC выбрали произвольную точку E . Докажите, что сумма площадей треугольников BEC и AED равна половине площади трапеции.
Комментарии: