Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
По
первому свойству квадрата, все его углы прямые, следовательно можно применить теорему Пифагора.
По определению квадрата, все его стороны равны.
d2=(3√2)2+(3√2)2
d2=2(3√2)2
По первому правилу действий со степенями:
d2=2*32(√2)2
d2=2*9*2=36
d=√36=6
Ответ: 6
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /ACB=32° (см. рисунок). Найдите величину угла AOB (в градусах).
В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AOD.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 4 м?
У треугольника со сторонами 4 и 16 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 4. Чему равна высота, проведённая ко второй стороне?
Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
Комментарии: