Какие из следующих утверждений верны?
1) Один из двух смежных углов острый, а другой тупой.
2) Площадь квадрата равна произведению двух его смежных сторон.
3) Все хорды одной окружности равны между собой.
Рассмотрим каждое утверждение:
1) "Один из двух
смежных углов острый, а другой тупой".
Острый угол - градусная мера от 0 до 90 градусов.
Прямой угол - градусная мера 90 градусов.
Тупой угол - градусная мера больше 90 градусов.
Так как сумма смежных углов равна 180°, то очевидно: если один из смежных углов больше 90°, то второй угол меньше 90°. Но если один из углов прямой (т.е. не острый и не тупой), то смежный ему угол тоже прямой. Следовательно, это утверждение неверно.
2) "Площадь
квадрата равна произведению двух его смежных сторон", это утверждение верно. Думаю, комментариев не требуется.
3) "Все хорды одной окружности равны между собой". Если рассмотреть первое свойство хорды, то становится понятно, что длина хорды зависит от ее удаленности от центра окружности, при чем диаметр - самая большая хорда. Поэтому это утверждение неверно.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AC=15, BC=5√
Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырёхугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.
Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 48, сторона BC равна 57, сторона AC равна 72. Найдите MN.
Косинус острого угла A треугольника ABC равен
. Найдите sinA.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=2, AC=8. Найдите AK.
Комментарии: