ОГЭ, Математика. Геометрия: Задача №C8A9ED | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №C8A9ED

Задача №862 из 1087
Условие задачи:

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.

Решение задачи:

По теореме об описанной окружности, центр описанной окружности лежит на точке пересечения серединных перпендикуляров сторон треугольника.
У прямоугольного треугольника центр окрудности лежит на середине гипотенузы, так же как и в треугольнике нашей задачи, следовательно данный треугольник прямоугольный.
Следовательно, можно применить теорему Пифагора:
AB2=BC2+AC2
AB - диаметр окружности, так как проходит через центр.
Тогда AB=2*R=2*10=20.
202=BC2+162
400=BC2+256
BC2=400-256=144
BC=12
Ответ: 12

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №CF5F48

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.



Задача №2FFCC7

Точка О – центр окружности, /ACB=70° (см. рисунок). Найдите величину угла AOB (в градусах).



Задача №30C063

Один из углов равнобедренной трапеции равен 113°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.



Задача №17E9DA

Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=12, DC=48, AC=35.



Задача №4A3A58

Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема об окружности, описанной около треугольника.
Около любого треугольника можно описать окружность.
Центр описанной окружности выпуклого n-угольника (а треугольник таковым и является) лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности). Центр описанной окружности.
1) У остроугольного треугольника центр описанной окружности лежит внутри
2) У тупоугольного — вне треугольника
3) У прямоугольного — на середине гипотенузы.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика