Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Проведем отрезки KH и HP.
Треугольники BKH и BPH являются
вписанными в данную окружность. А т.к. центр этой окружности располагается на середине их стороны BH, то это означает, что эти треугольники прямоугольные с гипотенузой BH (по
свойству описанной окружности).
Следовательно, ∠HKB и ∠HPB - прямые.
Рассмотрим четырехугольник BKHP, сумма углов любого четырехугольника равна 360°, следовательно ∠HKB+∠KBP+∠HPB+∠PHK=360°
90°+90°+90°+∠PHK=360°
∠PHK=90°
То есть получается, что четырехугольник BKHP является
прямоугольником. Диагонали этого прямоугольника BH и PK.
PK=BH=13 (по свойству
прямоугольника)
Ответ: 13
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
2) Смежные углы равны.
3) Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой.
Катеты прямоугольного треугольника равны 20 и 15. Найдите синус наименьшего угла этого треугольника.
Найдите площадь трапеции, изображённой на рисунке.
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
Укажите номера верных утверждений.
1) Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая медиана равнобедренного треугольника является его биссектрисой.
Комментарии: