Найдите площадь трапеции, диагонали которой равны 13 и 11, а средняя линия равна 10.
Площадь
трапеции равна произведению высоты на полусумму оснований:
SABCD=h*(BC+AD)/2=h*l, где l -
средняя линия трапеции l=(BC+AD)/2. Следовательно, нам надо найти высоту h.
Продлим основание AD и проведем отрезок из вершины C, параллельный BD до пересечения с продленным основанием в точке M (как показано на рисунке).
В четырехугольнике BCMD сторона CM||BD (мы сами так провели СМ) и DM||BC (по определению
трапеции).
Следовательно, четырехугольник BCMD -
параллелограмм.
Тогда, по
свойству параллелограмма, DM=BC.
AM=AD+DM=AD+BC=2l=2*10=20
Рассмотрим треугольник ACM.
Мы знаем длины всех его сторон, следовательно можем найти площадь через полупериметр:
Полупериметр p=(AC+CM+AM)/2=(AC+BD+AM)/2=(13+11+20)/2=22
SACM=√
По другой формуле SACM=h*AM/2=66
h=2*66/AM=2*66/20=6,6
Теперь мы можем вычислить площадь трапеции:
SABCD=h*l=6,6*10=66
Ответ: 66
Поделитесь решением
Присоединяйтесь к нам...
Косинус острого угла А треугольника равен . Найдите sinA.
Радиус окружности, вписанной в трапецию, равен 32. Найдите высоту этой трапеции.
Радиус окружности, описанной около равностороннего треугольника, равен 12. Найдите высоту этого треугольника.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 83°. Найдите величину угла OMK. Ответ дайте в градусах.
Комментарии: