ОГЭ, Математика. Геометрия: Задача №4F0B29 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4F0B29

Задача №280 из 1087
Условие задачи:

Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.

Решение задачи:

По свойству равнобедренной трапеции - углы при основании равны. Тогда /CDA=/BAD=40°+25°=65°.
AD||BC (по определению трапеции), тогда сторону AB можно рассматривать как секущую к этим параллельным прямым.
Следовательно, /DAB+/ABC=180° (т.к. эти углы внутренние односторонние) => /ABC=180°-/DAB=180°-65°=115°.
/BCD=/DAB=115° (по свойству равнобедренной трапеции).
Следовательно, это и есть бОльшие углы трапеции. Ответ: больший угол трапеции = 115°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №631510

На окружности с центром O отмечены точки A и B так, что /AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги.



Задача №72C87D

Один из углов параллелограмма равен 111°. Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.



Задача №9A0CCB

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=15, AC=25, NC=22.



Задача №B4A79A

Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=6, AD=13, AC=38. Найдите AO.



Задача №39FB77

Основания трапеции равны 5 и 13, а высота равна 9. Найдите площадь этой трапеции.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Трапеция – это четырёхугольник, две противоположные стороны которого параллельны, а две другие не параллельны. Параллельные стороны трапеции называются основаниями, а непараллельные — боковыми сторонами.

Прямоугольная трапеция — трапеция, имеющая прямые углы при боковой стороне.
Трапеция, у которой боковые стороны равны, называется равнобокой, равнобочной или равнобедренной.
Средняя линия — отрезок, соединяющий середины боковых сторон.
Площадь трапеции вычисляется по следующим формулам:
, или
, где m - средняя линия трапеции.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика