Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда /CDA=/BAD=40°+25°=65°.
AD||BC (по
определению трапеции), тогда сторону AB можно рассматривать как секущую к этим параллельным прямым.
Следовательно, /DAB+/ABC=180° (т.к. эти углы
внутренние односторонние) => /ABC=180°-/DAB=180°-65°=115°.
/BCD=/DAB=115° (по
свойству равнобедренной трапеции).
Следовательно, это и есть бОльшие углы трапеции.
Ответ: больший угол трапеции = 115°.
Поделитесь решением
Присоединяйтесь к нам...
Стороны AC, AB, BC треугольника ABC равны 2√
В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии: