Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда /CDA=/BAD=40°+25°=65°.
AD||BC (по
определению трапеции), тогда сторону AB можно рассматривать как секущую к этим параллельным прямым.
Следовательно, /DAB+/ABC=180° (т.к. эти углы
внутренние односторонние) => /ABC=180°-/DAB=180°-65°=115°.
/BCD=/DAB=115° (по
свойству равнобедренной трапеции).
Следовательно, это и есть бОльшие углы трапеции.
Ответ: больший угол трапеции = 115°.
Поделитесь решением
Присоединяйтесь к нам...
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 1 м, высота фонаря 9 м?
Сторона равностороннего треугольника равна 10√
Стороны AC, AB, BC треугольника ABC равны 3√
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна
100°.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Комментарии: