Четырёхугольник ABCD вписан в окружность. Угол ABC равен 70°, угол CAD равен 49°. Найдите угол ABD. Ответ дайте в градусах.
∠ABC является вписанным углом и опирается на дугу ADC (красная).
Следовательно, по теореме о вписанном угле, градусная мера дуги ADC равна 70°*2=140°
∠CAD тоже является вписанным углом и опирается на дугу DC.
Следовательно, по теореме о вписанном угле, градусная мера дуги DC равна 49°*2=98°
Тогда легко вычислить градусную меру дуги AD:
140°-98°=42°
Искомый ∠ABD тоже является вписанным углом и опирается на дугу AD.
Следовательно, по теореме о вписанном угле, угол ABD равен:
42°/2=21°
Ответ: 21
Поделитесь решением
Присоединяйтесь к нам...
Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади параллелограмма.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Найдите площадь трапеции, изображённой на рисунке.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.
Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.
Комментарии: