Точка О – центр окружности, /ACB=62° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=62°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 62°*2=124°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=124°.
Ответ: /AOB=124°.
Поделитесь решением
Присоединяйтесь к нам...
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.
Найдите площадь трапеции, изображённой на рисунке.
Четырёхугольник ABCD описан около окружности, AB=9, BC=13, CD=18. Найдите AD.
Высота AH ромба ABCD делит сторону CD на отрезки DH=24 и CH=2. Найдите высоту ромба.
Комментарии: