ОГЭ, Математика. Геометрия: Задача №2ED62B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вокруг любого правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам девятиугольника образуют равные углы, так как разбивают девятиугольник на равные треугольники.
Такой угол (например ∠DOE) равен 360°/9=40°
Тогда ∠AOC, который опирается на дугу ABC равен:
∠AOC=40°*2=80°
∠AOC является центральным, следовательно градусная мера дуги ABC тоже равна 80°
∠ADC тоже опирается на эту же дугу, но является вписанным, следовательно:
∠ADC=80°/2=40° (по теореме о вписанном угле)
Ответ: 40

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №5436CD

В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.



Задача №05BACB

Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).



Задача №176EA1

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 84°. Найдите величину угла OMK. Ответ дайте в градусах.



Задача №CD5252

Радиус окружности, описанной около квадрата, равен 162. Найдите длину стороны этого квадрата.



Задача №D60018

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=9, AC=18, MN=8. Найдите AM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанный в окружность угол — это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика