ОГЭ, Математика. Геометрия: Задача №3D67DD | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №3D67DD

Задача №361 из 1087
Условие задачи:

Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=43° и ∠OAB=13°. Найдите угол BCO. Ответ дайте в градусах.

Решение задачи:

Проведем отрезки CO и продолжим отрезок AO до отрезка BC, пересечение обозначим буквой E (как показано на рисунке).
Рассмотрим треугольник ABE. По теореме о сумме углов треугольника запишем: 180°=∠OAB+∠ABC+∠BEA
180°=13°+43°+∠BEA
∠BEA=180°-13°-43°=124°
Смежный этому углу ∠OEC=180°-∠BEA=180°-124°=56° (запомним это)
Угол ABC является вписанным углом, следовательно градусная мера дуги, на которую он опирается, вдвое больше (по теореме о вписанном угле), т.е. градусная мера дуги AC равна 43°*2=86°
Угол АОС является центральным и, соответственно, равен градусной мере дуги, на которую опирается. А опирается он на дугу AC, следовательно ∠AOC=86°
Смежный этому углу ∠COE=180°-∠AOC=180°-86°=94°
Рассмотрим треугольник OCE.
По теореме о сумме углов треугольника запишем:
180°=∠OEC+∠COE+∠OCE
Вспомнив то, что запомнили ранее... 180°=56°+94°+∠OCE
∠OCE=180°-56°-94°=30°
∠OCE и есть искомый угол BCO.
Ответ: ∠BCO=30°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E52F99

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №F48418

Площадь параллелограмма ABCD равна 56. Точка E — середина стороны CD. Найдите площадь трапеции AECB.



Задача №7D797D

Найдите площадь квадрата, описанного около окружности радиуса 32.



Задача №22636E

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.



Задача №3DEC64

Углы при одном из оснований трапеции равны 77° и 13°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 10. Найдите основания трапеции.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанный в окружность угол — это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика