ОГЭ, Математика. Геометрия: Задача №2ED62B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вокруг любого правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам девятиугольника образуют равные углы, так как разбивают девятиугольник на равные треугольники.
Такой угол (например ∠DOE) равен 360°/9=40°
Тогда ∠AOC, который опирается на дугу ABC равен:
∠AOC=40°*2=80°
∠AOC является центральным, следовательно градусная мера дуги ABC тоже равна 80°
∠ADC тоже опирается на эту же дугу, но является вписанным, следовательно:
∠ADC=80°/2=40° (по теореме о вписанном угле)
Ответ: 40

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FC3809

Какие из данных утверждений верны? Запишите их номера.
1) Любой параллелограмм можно вписать в окружность.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Точка пересечения двух окружностей равноудалена от центров этих окружностей.



Задача №AEA79E

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.



Задача №739060

Найдите тангенс угла AOB, изображённого на рисунке.



Задача №22FD03

В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.



Задача №EE4155

Косинус острого угла A треугольника ABC равен . Найдите sinA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Центральный угол в окружности - плоский угол с вершиной в центре этой окружности.
Дуга, на которую опирается центральный угол имеет ту же градусную меру.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика