Найдите угол ABC . Ответ дайте в градусах.
Проведем отрезки как показано на рисунке.
∠AOC -
центральный угол.
По рисунку (по клеточкам) видно, что ∠AOC=90°
Следовательно дуга ABC=90°
Тогда дуга ADC=360°-90°=270°
∠ABC опирается на эту дугу ADC и является
вписанным, по
теореме о вписанном угле:
∠ABC=270°/2=135°
Ответ: 135
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 28, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Стороны AC, AB, BC треугольника ABC равны 3√
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.
Сторона квадрата равна 3√2. Найдите диагональ этого квадрата.
В трапеции ABCD основания AD и BC равны соответственно 34 и 9, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=10.
Дуга, на которую опирается центральный угол имеет ту же градусную меру.
Комментарии:
(2015-04-06 22:54:44) Администратор: Елена, тоже вариант...
(2015-04-06 22:20:14) Елена: По сетке чётко видно, что АВС - это часть вписанного в окружность правильного восьмиугольника. Угол АВС - угол правильного восьмиугольника. Он равен 180*(8-2)/8=135