Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=70°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 70°*2=140°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=140°.
Ответ: /BOC=140°.
Поделитесь решением
Присоединяйтесь к нам...
Центральный угол AOB опирается на хорду АВ длиной 5. При этом угол ОАВ равен 60°. Найдите радиус окружности.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=66, AC=44, MN=24. Найдите AM.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
Катеты прямоугольного треугольника равны 2√
Комментарии: