Высота равнобедренной трапеции, проведённая из вершины C, делит основание AD на отрезки длиной 1 и 5. Найдите длину основания BC.
Проведем отрезок из точки B перпендикулярно AD, как показано на рисунке.
BCEF - прямоугольник.
Рассмотрим треугольники ABF и DCE.
∠BAF=∠CDE (по второму свойству равнобедренной трапеции).
∠BFA=∠CED=90°
Следовательно, ∠ABF=∠DCE (по теореме о сумме углов треугольника).
AB=CD (по определению равнобедренной трапеции).
Тогда, по второму признаку данные треугольники равны.
Следовательно AF=DE=1.
FE=AE-DE=5-1=4
BC=FE=4 (по свойству прямоугольника).
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Какие из следующих утверждений верны?
1) Площадь треугольника меньше произведения двух его сторон.
2) Средняя линия трапеции равна сумме её оснований.
3) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные
60° и 55°. Найдите меньший угол параллелограмма.
Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
Диагональ прямоугольника образует угол 51° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что
∠NBA=60°. Найдите угол NMB. Ответ дайте в градусах.
Комментарии: