Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Вариант №1 (Прислал один из наших пользователей, имя не известно).
∠KBP=90° (по условию)
Прямоугольный треугольник KPB с гипотенузой PK вписан в окружность.
Следовательно, PK является диаметром окружности. (по
теореме об описанной окружности).
KP=BH=13
Ответ: BH=13
Поделитесь решением
Присоединяйтесь к нам...
Высота равнобедренной трапеции, проведённая из вершины C, делит основание AD на отрезки длиной 1 и 5. Найдите длину основания BC.
Окружности радиусов 45 и 90 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
В трапеции ABCD AB=CD, ∠BDA=67° и ∠BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.
Высота равностороннего треугольника равна 15√
Комментарии:
(2019-09-05 10:22:32) Администратор: Ольга, не очень понятно, что Вы хотели сказать. Напишите, пожалуйста, поподробней.
(2019-09-04 16:31:29) Ольга: В данной задаче нужно показать два решения на 1 балл и на 0 баллов как в ОГЭ, ПОДЧЕРКНУВ ПОГРЕШНОСТИ ОБОСНОВАТЬ ВЫСТАВЛЕННЫЕ БАЛЛЫ