Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=7, AC=20. Найдите AO.
Рассмотрим треугольники AOD и BOC.
По определению трапеции, AD||BC, а AC можно рассматривать как секущую при параллельных прямых. Тогда:
∠DAO=∠BCO (накрест лежащие углы).
∠AOD=∠BOC (вертикальные углы).
Тогда, по первому признаку подобия (по двум углам), данные треугольники подобны.
Следовательно, можем записать пропорцию:
AD/BC=AO/OC
7/3=AO/OC
7*OC=3*AO
При этом AO+OC=AC=20
OC=20-AO, подставляем это равенство в ранее полученную пропорцию:
7*(20-AO)=3*AO
140-7*AO=3*AO
140=7*AO+3*AO
140=10*AO
AO=140/10=14
Ответ: 14
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=21, AO=75.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Радиус вписанной в квадрат окружности равен 2√2. Найдите диагональ этого квадрата.
Укажите номера верных утверждений.
1) Центр вписанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Ромб не является параллелограммом.
3) Сумма острых углов прямоугольного треугольника равна 90°.
Комментарии:
(2024-01-23 18:12:02) Али: В трапеции � � � � ABCDс основаниями � � = 4 BC=4и � � = 1 6 AD=16диагонали пересекаются в точке � . O.Найдите � � , OC,если � � = 1 2 . AC=12.