Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=5, AC=24. Найдите AO.
Рассмотрим треугольники AOD и BOC.
По определению трапеции, AD||BC, а AC можно рассматривать как секущую при параллельных прямых. Тогда:
∠DAO=∠BCO (накрест лежащие углы).
∠AOD=∠BOC (вертикальные углы).
Тогда, по первому признаку подобия (по двум углам), данные треугольники подобны.
Следовательно, можем записать пропорцию:
AD/BC=AO/OC
5/3=AO/OC
5*OC=3*AO
При этом AO+OC=AC=24
OC=24-AO, подставляем это равенство в ранее полученную пропорцию:
5*(24-AO)=3*AO
120-5*AO=3*AO
120=3*AO+5*AO
120=8*AO
AO=120/8=15
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=20, DK=15, BC=12. Найдите AD.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=42. Найдите MN.
Один из углов параллелограмма равен 111°. Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=20, BC=10. Найдите CM.
Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.
Комментарии: