ОГЭ, Математика. Геометрия: Задача №2DF0DD | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №2DF0DD

Задача №712 из 1087
Условие задачи:

Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=71° и ∠OAB=39°. Найдите угол BCO. Ответ дайте в градусах.

Решение задачи:

Вариант №1 Предложила пользователь Надя.
Проведем отрезок OB.
Рассмотрим треугольник AOB.
Так как AO=BO (это радиусы окружности), то данный треугольник равнобедренный.
Следовательно, ∠OAB=∠ABO=39° (по свойству равнобедренного треугольника)
∠OBC=∠ABC-∠ABO=71°-39°=32°.
Треугольник BOC тоже равнобедренный, т.к. OB=OC (радиусы окружности).
Следовательно, ∠OBC=∠BCO=32° (по свойству равнобедренного треугольника).
Ответ: 32


Вариант №2
Продолжим отрезок AO до отрезка BC, пересечение обозначим буквой E (как показано на рисунке).
Рассмотрим треугольник ABE. По теореме о сумме углов треугольника запишем: 180°=∠OAB+∠ABC+∠BEA
180°=39°+71°+∠BEA
∠BEA=180°-39°-71°=70°
Смежный этому углу ∠OEC=180°-∠BEA=180°-70°=110° (запомним это)
Угол ABC является вписанным углом, следовательно градусная мера дуги, на которую он опирается, вдвое больше (по теореме о вписанном угле), т.е. градусная мера дуги AC равна 71°*2=142°
Угол АОС является центральным и, соответственно, равен градусной мере дуги, на которую опирается. А опирается он на дугу AC, следовательно ∠AOC=142°
Смежный этому углу ∠COE=180°-∠AOC=180°-142°=38°
Рассмотрим треугольник OCE.
По теореме о сумме углов треугольника запишем:
180°=∠OEC+∠COE+∠OCE
Вспомнив то, что запомнили ранее... 180°=110°+38°+∠OCE
∠OCE=180°-110°-38°=32°
∠OCE и есть искомый угол BCO.
Ответ: 32

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B93B11

Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.



Задача №39E079

Найдите угол ABC . Ответ дайте в градусах.



Задача №1380DA

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.



Задача №05C64C

В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.



Задача №F33966

В треугольнике ABC AC=35, BC=515, угол C равен 90∘. Найдите радиус описанной окружности этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика