В треугольнике ABC проведена биссектриса AL, угол ALC равен 37°, угол ABC равен 25°. Найдите угол ACB. Ответ дайте в градусах.
Рассмотрим треугольник ABL.
∠BLA=180°-∠ALC=180°-37°=143° (т.к. это
смежные углы)
По
теореме о сумме углов треугольника:
180°=∠ABC+∠BLA+∠LAB=25°+143°+∠LAB
∠LAB=180°-25°-143°=12°
Рассмотрим треугольник ALC.
∠LAC=∠LAB=12° (т.к. AL -
биссектриса)
По
теореме о сумме углов треугольника:
180°=∠ALC+∠ACB+∠LAC=37°+∠ACB+12°
∠ACB=180°-37°-12°=131°
Ответ: 131
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен 128°. Найдите вписанный угол ACB. Ответ дайте в градусах.
Найдите площадь треугольника, изображённого на рисунке.
В треугольнике ABC угол C прямой, AC=6, cosA=0,6. Найдите AB.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба.
Комментарии: