Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.
Рассмотрим каждое утверждение:
1) "Если угол острый, то смежный с ним угол также является острым". Сумма
смежных углов равна 180°, следовательно, один из
смежных углов острый (<90°), то другой тупой (>90°). Т.е. это утверждение неверно.
2) "Диагонали квадрата взаимно перпендикулярны", это утверждение верно (по
свойству квадрата).
3) "В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности", это утверждение верно (по
определению окружности).
Поделитесь решением
Присоединяйтесь к нам...
Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.
В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 5 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.
Комментарии:
(2016-01-16 21:32:52) Администратор: Владимир, на нашем сайте пока нет единой базы со всеми определениями, теоремами и т.д. На сайд добавляются только те материалы, которые использовались при решении задач. Второе, в свойствах биссектрисы есть теорема о сторонах.
(2016-01-16 17:26:11) Владимир: Большое спасибо за сайт. Замечательный сайт. Очень помогает. Но вот ищу свойства высоты, и никак. Наподобие свойств медианы, бисектрисы. И второе. В свойствах бисектрисы не нашел то что она делит противоположную сторону на отрезки пропорциональные остальным двум сторонам. Или это не свойство? Тогдп что это?