В параллелограмме ABCD точка M — середина стороны AB. Известно, что MC=MD. Докажите, что данный параллелограмм — прямоугольник.
Рассмотрим треугольники DAM и MBC. AM=MB, т.к. точка M - середина AB, MC=MD (из условия задачи), AD=BC (по свойству параллелограмма). Соответственно, треугольники DAM и MBC равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /DAM=/MBC.
AD||BC (по определению параллелограмма), рассмотрим сторону AB как секущую к этим параллельным сторонам. Тогда получается, что сумма углов DAM и MBC равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону AD как секущую к этим параллельным сторонам.
/DAM и /ADC - внутренние односторонние. Следовательно их сумма равна 180°. А так как /DAM=90°, то /ADC тоже равен 90°.
Аналогично доказывается, что /BCD тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.
Радиус окружности, описанной около квадрата, равен 36√2. Найдите длину стороны этого квадрата.
В остроугольном треугольнике ABC высота AH равна 20√
В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=10:9. Прямая AK пересекает сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника ABC.
ABCDEFGHIJ – правильный десятиугольник. Найдите угол ADI. Ответ дайте в градусах.
Комментарии: