В выпуклом четырехугольнике ABCD известно, что AB=BC, AD=CD, ∠B=133°, ∠D=173°. Найдите угол A. Ответ дайте в градусах.
Проведем отрезок BD.
Рассмотрим треугольники BCD и BAD:
AB=BC (по условию)
AD=CD (по условию)
BD - общая сторона
По
третьему признаку (по трем сторонам) данные треугольники равны.
Следовательно, ∠С=∠A, обозначим как "х".
По теореме о сумме углов n-угольника получаем уравнение (n в нашем услучае равен 4):
180°(n-2)=∠A+∠B+∠C+∠D
180°(4-2)=x+133°+x+173°
180°*2=2x+306°
360°-306°=2x
x=27°
Ответ: 27
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 130°. Найдите вписанный угол ACB. Ответ дайте в градусах.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 36.
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
В треугольнике ABC угол C равен 135°, AB=14√2. Найдите радиус окружности, описанной около этого треугольника.
В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.
Комментарии:
(2017-05-14 18:55:22) Администратор: Людмила, можно, но лучше показать по какой формуле.
(2017-05-13 18:47:10) Людмила: Можно сразу использовать утверждение, что сумма углов четырехугольника равна 360 град.