В выпуклом четырехугольнике ABCD известно, что AB=BC, AD=CD, ∠B=133°, ∠D=173°. Найдите
угол A. Ответ дайте в градусах.
Проведем отрезок BD.
Рассмотрим треугольники BCD и BAD:
AB=BC (по условию)
AD=CD (по условию)
BD - общая сторона
По
третьему признаку (по трем сторонам) данные треугольники равны.
Следовательно, ∠С=∠A, обозначим как "х".
По теореме о сумме углов n-угольника получаем уравнение (n в нашем услучае равен 4):
180°(n-2)=∠A+∠B+∠C+∠D
180°(4-2)=x+133°+x+173°
180°*2=2x+306°
360°-306°=2x
x=27°
Ответ: 27
Поделитесь решением
Присоединяйтесь к нам...
Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=54° и ∠ACB=104°. Найдите угол DCB. Ответ дайте в градусах.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен
60°, а радиус окружности равен 6.
В прямоугольном треугольнике
ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 2√
Площадь равнобедренного треугольника равна 196√
Высота равностороннего треугольника равна 13√3. Найдите сторону этого треугольника.
Комментарии:
(2017-05-14 18:55:22) Администратор: Людмила, можно, но лучше показать по какой формуле.
(2017-05-13 18:47:10) Людмила: Можно сразу использовать утверждение, что сумма углов четырехугольника равна 360 град.