В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, СF = АM. Докажите, что EFKM — параллелограмм.
1) Рассмотрим треугольники АЕМ и CKF.
АЕ=CK (по условию задачи)
/A=/C (по
свойству параллелограмма)
СF=АM (по условию задачи).
Следовательно, треугольники АЕМ и CKF равны (по первому признаку).
Поэтому ЕМ=FK.
2) Рассмотрим треугольники EBF и KDM.
Т.к. AB=CD и AD=BC (по
свойству параллелограмма), а АЕ = CK и СF = АM (по условию задачи), то BE=KD и BF=DM.
/B=/D (по
свойству параллелограмма).
Следовательно, треугольники EBF и KDM (по первому признаку). А это значит, что EF=KM.
Из пунктов 1 и 2 (равенство сторон) следует, что EFKM —
параллелограмм (по
свойству параллелограмма).
Поделитесь решением
Присоединяйтесь к нам...
Центральный угол AOB, равный 60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD=36.
Синус острого угла A треугольника ABC равен . Найдите CosA.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Комментарии: