ОГЭ, Математика. Геометрия: Задача №0CDF34 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0CDF34

Задача №750 из 1087
Условие задачи:

Четырёхугольник ABCD со сторонами AB=19 и CD=28 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠ AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.

Решение задачи:

Вариант №1 (предложил пользователь Всеволод).
Проведем BE||AC
ABCE - трапеция по определению.
Так как эта трапеция вписана в окружность, то данная трапеция равнобедренная (по свойству описанной окружности).
Следовательно EC=AB=19.
∠AKB=∠KBE=60°, т.к. это накрест лежащие углы при параллельных прямых BE и AC.
BECD - четырехугольник, вписанный в окружность, следовательно:
∠ECD+∠KBE=180° (по свойству).
∠ECD=180°-∠KBE=180°-60°=120°
Применим теорему косинусов для треугольника CDE:
ED2=EC2+CD2-2*EC*CD*cos∠ECD
ED2=192+282-2*19*28*cos120°
ED2=361+784-2*19*28*(-1/2)
ED2=1145+532=1677
ED=1677
А теперь применим теорему синусов для треугольника CDE:
ED/sin∠ECD=2R
R=1677/(2*sin120°)=1677/(2*3/2)=1677/3=1677/3=559
Ответ: R=559


Вариант №2
Пусть R - радиус окружности.
Рассмотрим треугольник BCA.
Этот треугольник вписан в окружность, тогда по теореме синусов:
AB/sin(∠BCA)=2R
AB=2Rsin(∠BCA)
Рассмотрим треугольник BCD.
Этот треугольник тоже вписан в окружность, тогда по теореме синусов:
CD/sin(∠CBD)=2R
CD=2Rsin(∠CBD)
Рассмотрим треугольник BCK.
По теореме о сумме углов треугольника:
∠CBD+∠BCA+∠CKB=180°
∠AKB - является смежным по отношению к ∠CKB, следовательно ∠CKB=180°-∠AKB. Подставляем в уравнение выше:
∠CBD+∠BCA+(180°-∠AKB)=180°
∠CBD+∠BCA+(180°-60°)=180°
∠CBD+∠BCA=60°
Для простоты обозначим ∠BCA=а и ∠CBD=b, т.е. a+b=60°
a=60°-b
19=AB=2Rsin(a)
28=CD=2Rsin(60°-a)=2R(sin60°cos(a)-cos60°sin(a))=2R((3/2)*cos(a)-(1/2)*sin(a))=R(3cos(a)-sin(a)) (применена тригонометрическая формула)
Разделим второе уравнение на первое:
28/19=R(3cos(a)-sin(a))/(2Rsin(a))
28/19=(3cos(a)-sin(a))/(2sin(a))
28*2sin(a)=19*(3cos(a)-sin(a))
56sin(a)=193cos(a)-19sin(a)
75sin(a)=193cos(a)
Возведем правую и левую части в квадрат:
5625sin2(a)=361*3cos2(a)
1875sin2(a)=361(1-sin2(a)) (применена основная тригонометрическая формула)
1875sin2(a)=361-361sin2(a)
2236sin2(a)=361
sin2(a)=361/2236
sin(a)=361/2236
sin(a)=19/2236
19=2R*19/4*559)
1=2R/(2559)
R=559
Ответ: R=559

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D9D8CC

Найдите тангенс угла В треугольника ABC, изображённого на рисунке.



Задача №00048B

Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.



Задача №F17BEE

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 31 и 32, касаются сторон угла с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.



Задача №05BACB

Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).



Задача №AE8E84

На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,6 м, если длина его тени равна 2 м, высота фонаря 4 м?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.


X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика