В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AB*BC*cos∠ABC
42=22+32-2*2*3*cos∠ABC
16=4+9-12cos∠ABC
16-4-9=-12cos∠ABC
3=-12cos∠ABC
cos∠ABC=3/(-12)=-1/4=-0,25
Ответ: -0,25
Поделитесь решением
Присоединяйтесь к нам...
На клетчатой бумаге с размером клетки 1см х 1см отмечены точки A, B и C. Найдите расстояние от точки A до середины отрезка BC. Ответ выразите в сантиметрах.
Найдите тангенс угла
AOB.
Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
В треугольнике ABC угол C равен 90°, BC=6, sinA=0,6. Найдите AB.


Комментарии: