Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=5, AC=24. Найдите AO.
Рассмотрим треугольники AOD и BOC.
По определению трапеции, AD||BC, а AC можно рассматривать как секущую при параллельных прямых. Тогда:
∠DAO=∠BCO (накрест лежащие углы).
∠AOD=∠BOC (вертикальные углы).
Тогда, по первому признаку подобия (по двум углам), данные треугольники подобны.
Следовательно, можем записать пропорцию:
AD/BC=AO/OC
5/3=AO/OC
5*OC=3*AO
При этом AO+OC=AC=24
OC=24-AO, подставляем это равенство в ранее полученную пропорцию:
5*(24-AO)=3*AO
120-5*AO=3*AO
120=3*AO+5*AO
120=8*AO
AO=120/8=15
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC проведена биссектриса AL, угол ALC равен 148°, угол ABC равен 132°. Найдите угол ACB. Ответ дайте в градусах.
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 8 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 6 м. Найдите длину троса.
Сторона ромба равна 38, а один из углов этого ромба равен 150°. Найдите высоту этого ромба.
В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке.
Комментарии: