Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.
Проведем отрезок B1C1 и рассмотрим треугольники EB1C и EC1B.
∠C1EB=∠B1EC (так как они
вертикальные).
∠EB1C=∠EC1B=90° (так как BB1 и CC1 -
высоты).
По
первому признаку подобия треугольников, рассматриваемые треугольники
подобны.
Следовательно:
EB1/EC1=EC/EB
Рассмотрим треугольники EС1B1 и ECB
∠BEC=∠B1EC1 (так как они
вертикальные).
Как мы выяснили ранее:
EB1/EC1=EC/EB
Умножим левую и правую части равенства на EC1, получим:
EB1=EC1*EC/EB
Разделим левую и правую части на EC, получаем:
EB1/EC=EC1/EB
Получается, что по
второму признаку подобия треугольников, треугольники EС1B1 и ECB
подобны.
Следовательно, по
определению, углы BB1C1 и BCC1 равны.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=8, cosB=0,8. Найдите AB.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=4 и HD=1. Найдите площадь ромба.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, BC=32. Найдите AK.
Площадь круга равна 88. Найдите площадь сектора этого круга, центральный угол которого равен 45°.
Радиус окружности, описанной около равностороннего треугольника, равен 10. Найдите высоту этого треугольника.
Комментарии: