На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Вариант №1 (предложил пользователь Полина)
Рассмотрим треугольники ACH и BCH.
Докажем, что это подобные треугольники:
∠AHC=∠BHC=90° (так как CH -
высота).
По
теореме о сумме углов треугольника:
180°=∠CAH+∠AHC+∠HCA
180°=∠CAH+90°+∠HCA
90°=∠CAH+∠HCA
∠CAH=90°-∠HCA
Заметим, что:
∠BCH=90°-∠HCA
Получается, что ∠CAH=∠BCH
Тогда, по первому признаку подобия, данные треугольники подобны, т.е. можем записать пропорцию:
AH/CH=CH/BH
AH*BH=CH2
4*64=CH2
256=CH2
CH=√256=16
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
В трапецию, сумма длин боковых сторон которой равна 30, вписана окружность. Найдите длину средней линии трапеции.
В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 75°. Найдите величину угла OAB.
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Середина M стороны AD выпуклого четырехугольника равноудалена от всех его вершин. Найдите AD, если BC=8, а углы B и C четырёхугольника равны соответственно 129° и 96°.
Найдите угол ABC. Ответ дайте в градусах.
Комментарии:
(2020-05-12 15:27:02) Администратор: Александра, здравствуйте! Тоже хорошее решение, спасибо!
(2020-05-05 06:57:13) Александра: Здравствуйте, есть же еще решение без использования подобия треугольников. Провести медиану из прямого угла BM. Мы знаем, что медиана проведенная из прямого угла равна половине гипотенузы (BM=1/2*AB=34). И можем рассчитать отрезок между высотой и медианой(HM). HM=BH-1/2*AB=64-34=30. И по теореме Пифагора найдем CH^2=BM^2-HM^2=34^2-30^2=256 -> CH=16
(2017-11-13 20:46:51) Администратор: Полина, Ваш вариант проще, поэтому я опубликовал его. Спасибо за подсказку!
(2017-11-10 09:45:48) Полина: А зачем так усложнять? Можно же использовать свойство подобных треугольников. Составить пропорцию и решить в одно действие. CH²=64*4