ОГЭ, Математика. Геометрия: Задача №3DEC64 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №3DEC64

Задача №666 из 1087
Условие задачи:

Углы при одном из оснований трапеции равны 77° и 13°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 10. Найдите основания трапеции.

Решение задачи:

Продлим стороны AB и CD до пересечения в точке K.
Рассмотрим треугольник AKD.
По теореме о сумме углов треугольника:
∠AKD+∠KDA+∠DAK=180°
∠AKD+13°+77°=180°
∠AKD=90°
Следовательно треугольник AKD - прямоугольный с гипотенузой AD.
KF - медиана (по условию задачи).
Мысленно опишем вокруг этого треугольника окружность. Так как треугольник прямоугольный, то центр окружности располагается на середине гипотенузы AD (по теореме об описанной окружности).
Следовательно AF=FD=R - радиус окружности, медиана KF тоже равна радиусу и, следовательно, равна AD/2.
Рассмотрим треугольник GKH.
Для этого треугольника KO - медиана и равна половине гипотенузы GH (как и у предыдущего треугольника).
KO=OH=GH/2
В треугольнике BKC - аналогичная ситуация: KE=EC=BC/2
Вернемся к треугольнику GKH:
KO=OH=GH/2=11/2=5,5
5,5=OH=KE+EO
KE=EC (это мы выяснили ранее)
EO=EF/2 (так как EF делится пополам отрезком GH по условию задачи)
Следовательно, можем записать:
5,5=OH=KE+EO=EC+EF/2
EC=5,5-EF/2=5,5-10/2=0,5
BC=2*EC=2*0,5=1
Рассмотрим трапецию ABCD.
GH - средняя линия, следовательно GH=(BC+AD)/2
2GH=BC+AD
AD=2GH-BC=2*11-1=22-1=21
Ответ: AD=21, BC=1

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A00346

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.



Задача №FBD6AC

Стороны AC, AB, BC треугольника ABC равны 32, 15 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №D7D925

Сторона ромба равна 20, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №1113A9

Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.



Задача №29D911

Наклонная крыша установлена на трёх вертикальных опорах, расположенных на одной прямой. Средняя опора стоит посередине между малой и большой опорами (см. рис.). Высота малой опоры 1,8 м, высота большой опоры 2,8 м. Найдите высоту средней опоры.

Комментарии:


(2017-05-17 22:31:53) Администратор: Катерина, я добавил несколько строк в решение, чтобы стало понятно, откуда взялось это равенство.
(2017-05-17 06:21:34) Катерина: Почему OH=EC+EF/2 ?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольный треугольник — это треугольник, в котором один угол прямой (то есть составляет 90°).
Сторона, противоположная прямому углу, называется гипотенузой (сторона c на рисунке).
Стороны, прилегающие к прямому углу, называются катетами.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика