Высота AH ромба ABCD делит сторону CD на отрезки DH=21 и CH=8. Найдите высоту ромба.
AB=BC=CD=AD=DH+CH=21+8=29 (по
определению ромба).
Рассмотрим треугольник AHD.
AHD -
прямоугольный (т.к. AH -
высота), тогда по
теореме Пифагора: AD2=AH2+DH2
292=AH2+212
841=AH2+441
AH2=400
AH=20
Ответ: AH=20
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=7.
Найдите площадь треугольника, изображённого на рисунке.
В равнобедренную трапецию, периметр которой равен 200, а площадь равна 2000, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.
Комментарии:
(2017-02-20 23:56:06) Администратор: Наталья, для этого и трудимся. Спасибо и Вам.
(2017-02-20 23:15:17) Наталья: Замечательный сайт, в геометрии не сильно шарю а в этом году огэ сдавать ваш сайт стал для меня находкой, очень подробно и понятно всё объясняется ❤
(2015-02-21 12:32:03) Администратор: Виктория, спасибо и Вам за теплые слова.
(2015-02-21 11:16:00) Виктория: Как замечательно, что существует этот сайт. Спасибо вам огромное)
(2014-12-12 20:31:53) Эбонит: норм
(2014-06-13 14:59:47) динара : спасибо