Катет и гипотенуза прямоугольного треугольника равны 15 и 39. Найдите высоту, проведенную к гипотенузе.
Вариант №1
AB -
гипотенуза, BC - катет.
Найдем AC по
теореме Пифагора:
AB2=BC2+CA2
392=152+CA2
1521=225+CA2
1296=CA2
CA=36
Для треугольника ABC:
sinA=CB/AB=15/39=5/13
Для треугольника ACD:
sinA=CD/AC => CD=AC*sinA=36*5/13=180/13=13 целых и 11/13
Ответ: СD=13 целых и 11/13
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=43° и ∠OAB=13°. Найдите угол BCO. Ответ дайте в градусах.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой треугольник можно вписать окружность.
3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.
Высота равностороннего треугольника равна 13√3. Найдите сторону этого треугольника.
Дан правильный восьмиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится квадрат.
Комментарии:
(2016-04-13 14:40:14) Администратор: Даниил, Ваш вариант решения добавлен на наш сайт, спасибо Вам за решение.
(2016-04-12 23:33:56) Администратор: Даниил, обязательно рассмотрю Ваше решение.
(2016-04-10 21:48:56) Даниил: 2 вариант (мой взгляд) AB - гипотенуза, BC - катет. Найдем AC по теореме Пифагора: AB2=BC2+CA2 392=152+CA2 1521=225+CA2 1296=CA2 CA=36 S треугольника=AC*CB/2 (для прямоугольного тр) S треугольника=AB*CD/2 (т.к. CD-высота) значит AB*CD/2=AC*CB/2 39*CD=15*36 (2-ки сокращаются) CD=540/39 (15*36=540) CD=13 и 11/13