ОГЭ, Математика. Геометрия: Задача №077612 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1
AB - гипотенуза, BC - катет.
Найдем AC по теореме Пифагора:
AB2=BC2+CA2
392=152+CA2
1521=225+CA2
1296=CA2
CA=36
Для треугольника ABC:
sinA=CB/AB=15/39=5/13
Для треугольника ACD:
sinA=CD/AC => CD=AC*sinA=36*5/13=180/13=13 целых и 11/13
Ответ: СD=13 целых и 11/13


Вариант №2 (предложил Даниил)
AB - гипотенуза, BC - катет.
Найдем AC по теореме Пифагора:
AB2=BC2+CA2
392=152+CA2
1521=225+CA2
1296=CA2
CA=36
Площадь любого треугольника равна половине произведения высоты на сторону, к которой высота проведена, т.е. S=(a*h)/2.
SABC=(AB*CD)/2
Так же площадь треугольника, если треугольник прямоугольный, можно найти по формуле: половина произведения катетов.
SABC=(AC*BC)/2
Так как это площади одного и того же треугольника, то:
(AB*CD)/2=(AC*BC)/2
AB*CD=AC*BC
39*CD=36*15
CD=36*15/39=36*5/13=180/13=13 целых и 11/13
Ответ: 13 целых и 11/13

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №274F75

Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали любого прямоугольника делят его на 4 равных треугольника.
3) Для точки, лежащей внутри круга, расстояние до центра круга меньше его радиуса.



Задача №DA41D8

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=7.



Задача №B93B11

Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.



Задача №165C12

В треугольнике ABC угол C равен 90°, sinA=8/9, AC=217. Найдите AB.



Задача №0B3CDE

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=12, BF=5.

Комментарии:


(2016-04-13 14:40:14) Администратор: Даниил, Ваш вариант решения добавлен на наш сайт, спасибо Вам за решение.
(2016-04-12 23:33:56) Администратор: Даниил, обязательно рассмотрю Ваше решение.
(2016-04-10 21:48:56) Даниил: 2 вариант (мой взгляд) AB - гипотенуза, BC - катет. Найдем AC по теореме Пифагора: AB2=BC2+CA2 392=152+CA2 1521=225+CA2 1296=CA2 CA=36 S треугольника=AC*CB/2 (для прямоугольного тр) S треугольника=AB*CD/2 (т.к. CD-высота) значит AB*CD/2=AC*CB/2 39*CD=15*36 (2-ки сокращаются) CD=540/39 (15*36=540) CD=13 и 11/13

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольный треугольник — это треугольник, в котором один угол прямой (то есть составляет 90°).
Сторона, противоположная прямому углу, называется гипотенузой (сторона c на рисунке).
Стороны, прилегающие к прямому углу, называются катетами.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика