Катеты прямоугольного треугольника равны
√
Т.к. треугольник
прямоугольный, мы можем применить
теорему Пифагора:
AB2=BC2+CA2
AB2=(√
AB2=15+1=16
AB=4
Наименьший угол лежит напротив наименьшей стороны (по
теореме о соотношении сторон и углов).
Тогда наименьший угол - /ABC (т.к. 1 < √
sin(/ABC)=AC/AB=1/4=0,25
Ответ: синус наименьшего угла равен 0,25.
Поделитесь решением
Присоединяйтесь к нам...
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна
140°.
В угол C величиной 83° вписана окружность, которая касается сторон угла в точках A и B. Найдите угол AOB. Ответ дайте в градусах.
Площадь равнобедренного треугольника равна 144√
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит угол ВАС пополам. Найдите сторону АВ, если сторона АС равна 4.
Из вершины прямого угла C треугольника
ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Комментарии: