Катеты прямоугольного треугольника равны
√
Т.к. треугольник
прямоугольный, мы можем применить
теорему Пифагора:
AB2=BC2+CA2
AB2=(√
AB2=15+1=16
AB=4
Наименьший угол лежит напротив наименьшей стороны (по
теореме о соотношении сторон и углов).
Тогда наименьший угол - /ABC (т.к. 1 < √
sin(/ABC)=AC/AB=1/4=0,25
Ответ: синус наименьшего угла равен 0,25.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°, угол ABC равен 106°. Найдите угол ACB. Ответ дайте в градусах.
В треугольнике ABC известно, что ∠BAC=64°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.
Найдите площадь трапеции, изображённой на рисунке.
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит меньший угол.
2) Любой квадрат можно вписать в окружность.
3) Площадь трапеции равна произведению средней линии на высоту.
Хорды AC и BD окружности пересекаются в точке P, BP=12, CP=15, DP=25. Найдите AP.
Комментарии: