ОГЭ, Математика. Геометрия: Задача №A5F365 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №A5F365

Задача №818 из 1087
Условие задачи:

В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Решение задачи:

Проведем дополнительный отрезок и введем обозначения как показано на рисунке:
Рассмотрим треугольники AEB и AFB.
∠BAE - общий
Треугольник AEB - прямоугольный, т.к. центр окружности лежит на стороне этого треугольника ( теорема об описанной окружности)
Т.е. ∠EBA=90°
∠AFB=90°, т.к. по условию AD ⊥ AE
Следовательно, по первому признаку подобия треугольников, данные треугольники подобны.
Тогда:
AE/AB=AB/AF => AE*AF=AB2
Рассмотрим треугольники AEC и AFD.
∠FAD - общий
∠ACE=90°, т.к. AE - диаметр окружности ( теорема об описанной окружности)
∠AFD=90°, т.к. по условию BD ⊥ AE
Следовательно, по первому признаку подобия треугольников, данные треугольники подобны.
Тогда:
AE/AD=AC/AF => AD=AE*AF/AC
Подставляем выше найденное равенство:
AD=AB2/AC=302/100=9
CD=AC-AD=100-9=91
Ответ: 91

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №CBED59

В прямоугольном треугольнике ABC катет AC=25, а высота CH, опущенная на гипотенузу, равна 106. Найдите sin∠ABC.



Задача №C6A628

Найдите угол ABC. Ответ дайте в градусах.



Задача №296C71

На окружности отмечены точки A и B так, что меньшая дуга AB равна 66°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.



Задача №0BB4A3

Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.



Задача №C14C58

Найдите площадь квадрата, если его диагональ равна 1.

Комментарии:


(2020-05-05 17:14:49) Администратор: Влад, это не бред, а опечатка. Исправлено!
(2020-05-05 16:53:07) Влад: че за бред? как отрезки, лежащие на одной стороне могут быть перпендикулярны?!?!?!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика