ОГЭ, Математика. Геометрия: Задача №9A65C7 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №9A65C7

Задача №635 из 1087
Условие задачи:

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=12.

Решение задачи:

По условию задачи AB перпендикулярна BC, следовательно перпендикулярна и AD (т.к. в трапеции основания параллельны).
Расстояние от точки Е до прямой CD - отрезок, перпендикулярный CD и проходящий через точку Е.
Продолжим стороны AB и CD до пересечения в точке T.
Проведем CK параллельно AB.
AK=BС (т.к. ABKC - прямоугольник).
KD=AD-AK=14-12=2
По определению косинуса: cos∠CDK=KD/CD=2/CD
Рассмотрим треугольники TCB и CKD.
∠CTB=∠DCK (т.к. это соответственные углы при параллельных прямых TA и CK)
∠TBC=∠CKD=90°
Следовательно, эти треугольники подобны (по первому признаку подобия).
Тогда, BC/KD=TC/CD
12/2=TC/CD
TC=6CD
По теореме о касательно и секущей:
TE2=TD*TC=(TC+CD)*TC=(6CD+CD)6CD=7CD*6CD=42CD2
TE=CD42
Рассмотрим треугольники TEF и TAD.
∠CTB - общий
∠EFT=∠TAD=90°
Следовательно, применив теорему о сумме углов треугольника, получаем, что ∠TEF=∠ADT (=∠CDK).
Следовательно, cos∠TEF=cos∠ADT(=cos∠CDK).
EF=TE*cos∠TEF=TE*cos∠ADT=2TE/CD=2CD42/CD=242
Ответ: EF=242

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №C6FA1C

Найдите тангенс угла А треугольника ABC, изображённого на рисунке.



Задача №96E95A

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите длину стороны AC, если радиус описанной окружности треугольника ABC равен 7.



Задача №0E345D

Площадь круга равна 180. Найдите площадь сектора этого круга, центральный угол которого равен 30°.



Задача №056B05

На клетчатой бумаге с размером клетки 1см х 1см отмечены точки A, B и C. Найдите расстояние от точки A до середины отрезка BC. Ответ выразите в сантиметрах.



Задача №0EF7A9

В треугольнике ABC AC=15, BC=57, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.

Комментарии:


(2017-06-03 19:47:21) Администратор: Катя, я подписал в решении, чтобы стало понятней. ∠ADT - это ∠CDK, который равен 2/CD (это мы нашли ранее).
(2017-06-03 01:35:19) Катя: Объясните пожалуйста последнюю строчку в решении : почему произведение косинуса угла ADT на TE равно 2TE/CD?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика