ОГЭ, Математика. Геометрия: Задача №0EF6F5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0EF6F5

Задача №573 из 1087
Условие задачи:

Проектор полностью освещает экран A высотой 100 см, расположенный на расстоянии 230 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 320 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?

Решение задачи:

Обозначим треугольники и их ключевые точки как показано на рисунке.
Рассмотрим треугольники EGI и EFJ.
Прямая EH перпендикулярна обоим экранам и проходит через их центр, следовательно является серединным перпендикуляром.
То есть, FK=FJ/2=100/2=50 и GH=GI/2=320/2=160.
Рассмотрим треугольники EFK и EGH.
∠FEK - общий для обоих треугольников.
∠EKF=∠EHG=90° (т.к. EH - серединный перпендикуляр).
Тогда, по первому признаку подобия, данные треугольники подобны.
Следовательно, мы можем записать пропорцию сторон:
EH/EK=GH/FK
EH/230=160/50
EH=(160*230)/50=736
Ответ: 736

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №18BC42

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=12, AC=42, NC=25.



Задача №05D5F0

Катеты прямоугольного треугольника равны 15 и 1. Найдите синус наименьшего угла этого треугольника.



Задача №116AB8

Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 28, сторона BC равна 19, сторона AC равна 34. Найдите MN.



Задача №7CF591

В параллелограмме KLMN точка E — середина стороны LM. Известно, что EK=EN. Докажите, что данный параллелограмм — прямоугольник.



Задача №FE237C

В трапеции ABCD AD=3, BC=1, а её площадь равна 12. Найдите площадь треугольника ABC.

Комментарии:


(2017-02-10 10:23:50) ольга николаевна швецова: Спасибо!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика