Человек ростом 1,5 м стоит на расстоянии 7 м от столба, на котором висит фонарь на высоте 3,6 м. Найдите длину тени человека в метрах.
Рассмотрим рисунок:
BD - человек
AE - высота фонаря
ED - расстояние от фонаря до человека
DC - длина тени человека
Рассмотрим треугольники ACE и BCD.
∠C - общий
∠AEC=∠BDC=90° (это прямые углы)
Следовательно, по
первому признаку подобия треугольников, эти треугольники
подобны.
Тогда:
AE/BD=EC/DC
AE/BD=(ED+DC)/DC
3,6/1,5=(7+DC)/DC
2,4=7/DC+1
1,4=7/DC
DC=7/1,4=5
Ответ: длина тени равна 5 м.
Поделитесь решением
Присоединяйтесь к нам...
Стороны AC, AB, BC треугольника ABC равны 2√
Найдите площадь трапеции, изображённой на рисунке.
В треугольнике ABC AB=BC=37, AC=24. Найдите длину медианы BM.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:4, KM=18.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.


Комментарии:
(2017-01-17 23:47:27) Администратор: Настя, решайте побольше задач.
(2017-01-16 17:58:59) настя: ка выучить геометрию с алгеброй?