ОГЭ, Математика. Геометрия: Задача №DABB4F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №DABB4F

Задача №1022 из 1087
Условие задачи:

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=21, MN=14. Площадь треугольника ABC равна 27. Найдите площадь треугольника MBN.

Решение задачи:

Рассмотрим треугольники ABC и MBN.
∠ABC - общий.
∠BAC=∠BMN
Следовательно, по первому признаку подобия, эти треугольники подобны.
Площади треугольника ABC:
SABC=(1/2)AC*h1
27=(1/2)*21*h1
h1=27*2/21=54/21=18/7
Из подобия треугольников получаем пропорцию:
AC/MN=h1/h2

Тогда площадь треугольника MBN:
SMBN=(1/2)MN*h2

Ответ: 12

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0877E6

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 3°?



Задача №41017F

В треугольнике ABC известно, что AC=38, BM — медиана, BM=17. Найдите AM.



Задача №08AB9E

На окружности с центром O отмечены точки A и B так, что ∠AOB=40°. Длина меньшей дуги AB равна 50. Найдите длину большей дуги.



Задача №0118F9

В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°, угол ABC равен 106°. Найдите угол ACB. Ответ дайте в градусах.



Задача №C3CA4A

Сторона равностороннего треугольника равна 18√3. Найдите радиус окружности, описанной около этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика