ОГЭ, Математика. Геометрия: Задача №AC6D81 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №AC6D81

Задача №785 из 1087
Условие задачи:

Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 20, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Решение задачи:

Проведем отрезок, параллельный основаниям, как показано на рисунке.
EF - средняя линия трапеции, так как соединяет середины боковых сторон трапеции (по теореме Фалеса).
∠ADE=∠DEF (так как это накрест-лежащие углы при параллельных прямых EF и AD и секущей ED).
Получается, что ∠DEF=∠EDF (так как DE - биссектриса).
Значит треугольник EFD - равнобедренный (по свойству равнобедренного треугольника).
Следовательно, EF=FD (по определению).
EF=FD=CD/2=20/2=10
EF=(BC+AD)/2=10
(2+AD)/2=10
2+AD=20
AD=18
Проведем высоты как показано на рисунке.
MN=BC=3 (т.к. BCNM - прямоугольник).
BM=CN=h
Обозначим AM как x, для удобства.
AD=AM+MN+ND
18=x+2+ND
ND=16-x
Для треугольника ABM запишем теорему Пифагора:
AB2=h2+x2
122=h2+x2
h2=144-x2
Для треугольника CDN запишем теорему Пифагора:
CD2=h2+ND2
202=h2+(16-x)2
400=h2+(16-x)2
Подставляем вместо h2 значение из первого уравнения:
400=144-x2+(16-x)2
400-144=-x2+162-2*16*x+x2
256=162-2*16*x |:16
16=16-2x
2x=0
x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции.
Тогда площадь трапеции равна:
S=AB(AD+BC)/2=12(18+2)/2=6*20=120
Ответ: 120

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0BB6AA

Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.



Задача №FE0565

В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен 128°. Найдите вписанный угол ACB. Ответ дайте в градусах.



Задача №EE565F

Косинус острого угла A треугольника ABC равен . Найдите sinA.



Задача №20E710

Площадь параллелограмма ABCD равна 140. Точка E — середина стороны AB. Найдите площадь треугольника CBE.



Задача №E41F51

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 3 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика