ОГЭ, Математика. Геометрия: Задача №0DB4CC | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0DB4CC

Задача №756 из 1087
Условие задачи:

На отрезке AB выбрана точка C так, что AC=60 и BC=27. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.

Решение задачи:

Проведем отрезок AD, где D - точка касания окружности и касательной.
AD перпендикулярен к касательной (по свойству касательной), т.е. угол между AD и касательной DB равен 90°.
Следовательно, треугольник ABD - прямоугольный.
AD=AC=60 (т.к. это радиусы окружности и, соответственно, равны друг другу).
По теореме Пифагора: AB2=AD2+BD2
(AC+BC)2=AD2+BD2
(60+27)2=602+BD2
7569=3600+BD2
BD2=3969
BD=63
Ответ: 63

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E91153

Найдите тангенс угла AOB.



Задача №ADA70A

Точка О – центр окружности, /AOB=130° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №E3F3D9

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 85° и 30°. Найдите меньший угол параллелограмма.



Задача №7CA3AC

Площадь круга равна 88. Найдите площадь сектора этого круга, центральный угол которого равен 45°.



Задача №09F434

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика