Найдите площадь квадрата, если его диагональ равна 1.
По
определению стороны
квадрата равны друг другу, обозначим длину сторон как "а".
По
свойству, все углы квадрата прямые, следовательно можно применить
теорему Пифагора для получившегося треугольника, квадрат диагонали будет равен сумме квадратов сторон:
a2+a2=12
2a2=1
a2=0,5
a2 - это и есть площадь квадрата.
Ответ: 0,5
Поделитесь решением
Присоединяйтесь к нам...
Диагональ прямоугольника образует угол 51° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
Один из острых углов прямоугольного треугольника равен 48°. Найдите его другой острый угол. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, BC=8, AB=10. Найдите cosB.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: