Катеты прямоугольного треугольника равны 20 и 15. Найдите синус наименьшего угла этого треугольника.
Так как треугольник
прямоугольный, то можем применить
теорему Пифагора:
AB2=BC2+AC2
AB2=152+202
AB2=225+400=625
AB=25
Меньший угол лежит напротив меньшей стороны, 15<20, следовательно
синус меньшего угла будет равен
отношению меньшей стороны к гипотенузе, т.е. 15/25=3/5=0,6
Ответ: 0,6
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла AOB.
Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.
На стороне AB треугольника ABC взята точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=12, BC=18 и CD=8.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=57°. Найдите величину угла BOC. Ответ дайте в градусах.
Комментарии:
(2016-12-28 02:13:35) Администратор: Влад, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-12-25 22:08:36) влад: в прямоугольном треугольнике катеты раны 15 и 20 см. найти площадь