ОГЭ, Математика. Геометрия: Задача №F6A964 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №F6A964

Задача №612 из 1084
Условие задачи:

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.

Решение задачи:

Радиус вписанной окружности можно вычислить по формуле R=(AC+CB-AB)/2. Для этого необходимо вычислить длины всех сторон данного треугольника.
Рассмотрим треугольник ABC.
По определению tgBAC=CB/AC=4/3 => AC=3*CB/4.
По теореме Пифагора AB2=AC2+CB2
AB2=(3*CB/4)2+CB2
AB2=9*CB2/16+CB2
AB2=25*CB2/16
AB=5*CB/4
Необходимо вычислить CB.
По теореме о сумме углов треугольника для треугольника ABC:
/ABC=180°-90°-/BAC
Для треугольника BCP:
/ABC=180°-90°-/BCP
Следовательно, /BAC=/BCP.
Рассмотрим треугольник BCP.
По определению tgBCP=BP/CP=4/3 => CP=3*BP/4.
По теореме Пифагора CB2=CP2+BP2
CB2=(3*BP/4)2+BP2
CB2=9*BP2/19+BP2
CB2=25*BP2/16
CB=5*BP/4
BP=4*CB/5
r=(BP+CP-CB)/2
2*r=BP+3*BP/4-CB
2*8=7*BP/4-CB
16=7*(4*CB/5)/4-CB
16=(7*4)*CB/(5*4)-CB
16=7*CB/5-CB
16=2*CB/5 |:2
8=CB/5
CB=8*5=40
Вычислив CB, мы можем вычислить AB и AC, указанные выше:
AB=5*CB/4=5*40/4=5*10=50
AC=3*CB/4=3*40/4=3*10=30
R=(AC+CB-AB)/2, тогда получаем:
R=(30+40-50)/2=20/2=10
Ответ: R=10.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0E345D

Площадь круга равна 180. Найдите площадь сектора этого круга, центральный угол которого равен 30°.



Задача №F63DA7

На стороне AC треугольника ABC отмечена точка D так, что AD=5, DC=7. Площадь треугольника ABC равна 60. Найдите площадь треугольника ABD.



Задача №14815C

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.



Задача №184501

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равносторонний.



Задача №0118F9

В треугольнике ABC проведена биссектриса AL, угол ALC равен 112°, угол ABC равен 106°. Найдите угол ACB. Ответ дайте в градусах.

Комментарии:


(2015-02-02 18:44:10) Марина: Первый способ решения приводит к верному ответу, хотя используется теорема синусов. Как известно теорема синусов связывает зависимостью стороны, синусы и радиус ОПИСАННОЙ окружности треугольника, что и видно в решении (2R=AB). А нам нужен радиус вписанной окружности.
(2015-02-01 14:19:29) Администратор: Марина, да, Вы правы, изучу как это получилось...
(2015-02-01 11:51:37) Марина: Первый способ решения приводит к верному ответу, хотя используется теорема синусов. Как известно теорема синусов связывает зависимостью стороны, синусы и радиус ОПИСАННОЙ окружности треугольника, что и видно в решении (2R=AB). А нам нужен радиус вписанной окружности.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика