В треугольнике ABC угол C равен 90°, sinA=0,4, AC=√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*0,4=0,4AB
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(0,4AB)2+(√
AB2-(0,4AB)2=21
AB2(1-0,42)=21
AB2*0,84=21
AB2=25
AB=5
Ответ: AB=5
Поделитесь решением
Присоединяйтесь к нам...
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.
Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
В остроугольном треугольнике ABC проведена высота BH, ∠BAC=37°. Найдите угол ABH. Ответ дайте в градусах.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 28.
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=48 и CH=2. Найдите cosB.
Комментарии: