Длина хорды окружности равна 60, а расстояние от центра окружности до этой хорды равно 40. Найдите диаметр окружности.
Обозначим ключевые точки, как показано на рисунке. Проведем отрезок АО.
Рассмотрим треугольник AOB.
Данный треугольник
прямоугольный, так как расстояние ОВ является
высотой (кротчайшее расстояние).
AB равна половине длины
хорды (по
третьему свойству хорды).
Тогда, по
теореме Пифагора:
AO2=OB2+AB2
AO2=402+(60/2)2
AO2=1600+900=2500
AO=50 - это радиус окружности, следовательно, диаметр D=2*AO=100
Ответ: D=100
Поделитесь решением
Присоединяйтесь к нам...
Хорды AC и BD окружности пересекаются в точке P, BP=12, CP=15, DP=25. Найдите AP.
На клетчатой бумаге с размером клетки 1x1 изображена трапеция. Найдите её площадь.
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=1°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 8 и 7. Найдите площадь параллелограмма ABCD.
Найдите площадь параллелограмма, изображённого на рисунке.
Комментарии:
(2017-03-13 00:01:12) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-03-12 22:56:54) \'\'\': радиус вписанной в треугольник ABC окружности равен 4 причём AC=BC.На прямой взята точка D удалённая от прямых АС и ВС на расстоянии 11 и 3 соответственно.НАЙДИТЕ КОСИНУС УГЛА DВС