Лестница соединяет точки A и B. Высота каждой ступени равна 10,5 см, а длина – 36 см. Расстояние между точками A и B составляет 15 м. Найдите высоту, на которую поднимается лестница (в метрах).
Чтобы определить высоту, на которую поднимается лестница, надо узнать количество ступеней и умножить на высоту ступени.
Каждая ступенька представляет из себя
прямоугольный треугольник, следовательно расстояние между точками А и В будет равняться сумме гипотенуз ступеней.
По
теореме Пифагора:
Квадрат гипотенузы одной ступени равен 10,52+362=110,25+1296=1406,25
Тогда длина гипотенузы равна √
1500/37,5=40 ступеней составляют лестницу.
10,5*40=420 см - высота лестницы = 4,2 м
Ответ: 4,2
Поделитесь решением
Присоединяйтесь к нам...
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=57°. Найдите величину угла BOC. Ответ дайте в градусах.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 1 и 7.
Сторона квадрата равна 40√2. Найдите радиус окружности, описанной около этого квадрата.
Окружности радиусов 45 и 90 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
В треугольнике ABC угол C равен 90°, AC=12 , tgA=2√
Комментарии:
(2017-02-24 20:04:10) Администратор: Марина, потому, что \"каждая ступенька - это прямоугольный треугольник\", а расстояние между точками - это гипотенуза этого треугольника. Можно, конечно, решать и без теоремы Пифагора, через теорему косинусов, или через радиус описанной окружности, но это усложнит решение.
(2017-02-24 19:04:43) Марина: Почему решается по теореме пифагора?