В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*9/10=0,9AB
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(0,9AB)2+(√
AB2-(0,9AB)2=19
AB2(1-0,92)=19
AB2*0,19=19
AB2=100
AB=10
Ответ: AB=10
Поделитесь решением
Присоединяйтесь к нам...
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=15° и ∠OAB=8°. Найдите угол BCO. Ответ дайте в градусах.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.
Комментарии: