В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
По
определению: sinA=BC/AB => BC=AB*sinA=AB*9/10=0,9AB
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(0,9AB)2+(√
AB2-(0,9AB)2=19
AB2(1-0,92)=19
AB2*0,19=19
AB2=100
AB=10
Ответ: AB=10
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD известно, что AD=4, BC=2, а её площадь равна 69. Найдите площадь треугольника ABC.
Пол комнаты, имеющей форму прямоугольника со сторонами 4 м и 10 м, требуется покрыть паркетом из прямоугольных дощечек со сторонами 5 см и 20 см. Сколько потребуется таких дощечек?
В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника COD.
В параллелограмме KLMN точка A — середина стороны KN. Известно, что AL=AM. Докажите, что данный параллелограмм — прямоугольник.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.

Комментарии: